Thursday, November 26, 2020
Home Industry News Robotic AI learns to be spontaneous

Robotic AI learns to be spontaneous

Autonomous functions for robots, such as spontaneity, are highly sought after. Many control mechanisms for autonomous robots are inspired by the functions of animals, including humans. Roboticists often design robot behaviours using predefined modules and control methodologies, which makes them task-specific, limiting their flexibility.

Researchers offer an alternative machine learning-based method for designing spontaneous behaviors by capitalizing on complex temporal patterns, like neural activities of animal brains. They hope to see their design implemented in robotic platforms to improve their autonomous capabilities.


READ MORE: If a robot is conscious, is it OK to turn it off? The moral implications of building true AIs


Robots and their control software can be classified as a dynamical system, a mathematical model that describes the ever-changing internal states of something. There is a class of dynamical system called high-dimensional chaos, which has attracted many researchers as it is a powerful way to model animal brains.

However, it is generally hard to gain control over high-dimensional chaos owing to the complexity of the system parameters and its sensitivity to varying initial conditions, a phenomenon popularized by the term “butterfly effect.” Researchers from the Intelligent Systems and Informatics Laboratory and the Next Generation Artificial Intelligence Research Center at the University of Tokyo explore novel ways for exploiting the dynamics of high-dimensional chaos to implement humanlike cognitive functions.

“There is an aspect of high-dimensional chaos called chaotic itinerancy (CI) which can explain brain activity during memory recall and association,” said doctoral student Katsuma Inoue. “In robotics, CI has been a key tool for implementing spontaneous behavioral patterns. In this study, we propose a recipe for implementing CI in a simple and systematic fashion only using complicated time-series patterns generated by high-dimensional chaos. We felt our approach holds the potential for more robust and versatile applications when it comes to designing cognitive architectures. It allows us to design spontaneous behaviours without any predefined explicit structures in the controller, which would otherwise serve as a hindrance.”

Reservoir computing (RC) is a machine learning technique that builds on dynamical systems theory and provides the basis of the team’s approach. RC is used to control a type of neural network called a recurrent neural network (RNN). Unlike other machine learning approaches that tune all neural connections within a neural network, RC only tweaks some parameters while keeping all other connections of an RNN fixed, which makes it possible to train the system faster.

When the researchers applied principles of RC to a chaotic RNN, it exhibited the kind of spontaneous behavioural patterns they were hoping for. For some time, this has proven a challenging task in the field of robotics and artificial intelligence. Furthermore, the training for the network takes place prior to execution and in a short amount of time.

“Animal brains yield high-dimensional chaos in their activities, but how and why they utilize chaos remains unexplained. Our proposed model could offer insight into how chaos contributes to information processing in our brains,” said Associate Professor Kohei Nakajima.

“Also, our recipe would have a broader impact outside the field of neuroscience since it can potentially be applied to other chaotic systems too. For example, next-generation neuromorphic devices inspired by biological neurons potentially exhibit high-dimensional chaos and would be excellent candidates for implementing our recipe. I hope we will see artificial implementations of brain functions before too long.”

Source: University of Tokyo

Katsuma Inoue, Kohei Nakajima and Yasuo Kuniyoshi. Designing spontaneous behavioral switching via chaotic itinerancy. Science Advances, 2020  

DOI: 10.1126/sciadv.abb3989

Robots AI Machine learning Robotics University of Tokyo high dimensional chaos  chaotic itinerancy 

What do you think?

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Stay Connected

Join Our Newsletter

Must Read

What Canada’s top CEOs think about remote work

When the COVID-19 pandemic hit in March, millions of Canadians switched from working in a central office location to working from home. Days turned...

Curved origami offers creative route to making robots and other mechanical devices

Building robotic grippers that can firmly grasp heavy objects and also gently grasp delicate ones usually requires complicated sets of gears, hinges and motors....

‘You may be hacked’ and other things doctors should tell you

On September 9 2020, a woman died during a cyber-attack on a hospital in Düsseldorf, Germany. The woman was in a critical condition and...

Scientists use bacteria as micro-3D printers

A team at Aalto University has used bacteria to produce intricately designed three-dimensional objects made of nitrocellulose. With their technique, the researchers are able...

Related News

What Canada’s top CEOs think about remote work

When the COVID-19 pandemic hit in March, millions of Canadians switched from working in a central office location to working from home. Days turned...

Curved origami offers creative route to making robots and other mechanical devices

Building robotic grippers that can firmly grasp heavy objects and also gently grasp delicate ones usually requires complicated sets of gears, hinges and motors....

‘You may be hacked’ and other things doctors should tell you

On September 9 2020, a woman died during a cyber-attack on a hospital in Düsseldorf, Germany. The woman was in a critical condition and...

Scientists use bacteria as micro-3D printers

A team at Aalto University has used bacteria to produce intricately designed three-dimensional objects made of nitrocellulose. With their technique, the researchers are able...

A little-known technology change will make video streaming cheaper and pave the way for higher quality

A new format for compressing video, called Versatile Video Coding (H.266/VVC), at first glance might not seem to be the most exciting or profound...